Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations November-2022 ALGEBRA AND CALCULUS

(Common To All)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

1

a Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ into Echelon form and find its rank.

b Show that the equations x + y + z = 4; 2x + 5y - 2z = 3; x + 7y - 7z = 5 are not consistent.

L1 6M

6M

OR

Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ and find A^{-1} and A^{4} using

Cayley-Hamilton theorem.

UNIT-II

3 a Verify Rolle's theorem for the function $f(x) = \frac{\sin x}{e^x}$ in $[0, \pi]$

L2 6M

b If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1} x + \tan^{-1} y$, find $\frac{\partial(u,v)}{\partial(x,y)}$

L1 6M

OR

4 a Find the shortest distance from origin to the surface $xyz^2 = 2$.

L1 6M

b Find the minimum value of $x^2+y^2+z^2$ given x+y+z=3a.

L1 6M

UNIT-III

5

a Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^{2} x} dx$

L5 6M

b Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-y^{2}}} (x^{2}+y^{2})dydx$

L5 6M

OR

6 a Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$

L5 6M

b Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by converting into polar coordinates.

L3 6M

UNIT-IV

7 **a** Find grad f if $f = xz^4 - x^2y$ at a point (1, -2, 1). Also find $|\nabla f|$ L1 6M **b** Show that the vector $(x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$ is Irrotational and find its scalar potential.

OR

- 8 a Prove that $div(curl\bar{f}) = 0$ where \bar{f} is vector point function.

 b Find $curl\ \bar{f}$ if $\bar{f} = grad(x^3 + y^3 + z^3 3xyz)$ L1 6M
- 9 a If $\bar{F} = (5xy 6x^2)\vec{i} + (2y 4x)\vec{j}$ then evaluate $\int_c \bar{F} \cdot d\bar{r}$ along the curve L5 6M $y = x^3$ in xy-plane from (1,1)to(2,8).
 - b Evaluate by Green's theorem $\oint_c (y \sin x) dx + \cos x dy$ where 'c' is the triangle L5 6M enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi y = 2x$.

OR

10 Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\vec{i} - 2xy\vec{j}$ taken around the rectangle L2 12M bounded by the lines $x = \pm a$, $y = \pm b$.

*** END ***